Thursday, November 20, 2014
Audio Frequency Generator Circuit
![]() |
AFG |
Wednesday, November 19, 2014
Adapter power supply and charger circuit
Adapter, power supply and charger circuit |
Friday, November 14, 2014
FIRE ALARM CIRCUIT
Circuit Description
Circuit Diagram

Circuit Explanation
- The DR25 germanium diode is heat sensor which will conduct when temperature is increased at certain point. The DR25 is made reverse biased in the circuit. It will conduct only when it is more than 70degree of room temperature.
- The DR25 is connected to the transistor in reverse bias, which has high reverse resistance (more than 10K ohm) and does not make the transistor to turn off which is connected to the reset pin of 555 timer. The reset pin of 555timer will be in ground level when the transistor is turned off. Here, the 555 timer is configured as astable multivibrator.
- When more than 70degrees in room temperature occurred, the resistance of DR25 diode drops to 1k ohm which will make the transistor to turn off and make the reset pin to go high. This will generate the output at pin3 and make the sound through the alarm.
- We can use 3 or more diodes in reverse bias connected in parallel and placed in different room. If there is fire accident, it will sense and make the alarm.
Note
- If DR25 germanium diode is available, you can still use AC128, AC188 or 2N360 germanium transistors. Use base and emitter junctions in place of cathode and anode.
- Diode must be connected to the circuit in reverse bias.
Wednesday, November 12, 2014
NJU7365 bassed DC brushless motor driver circuit with explanation
A very simple single phase dc brushless motor driver electronic circuit project can be designed using NJU7365 DC brushless motor driver ic manufactured by New Japan radio Co. LTD .
The NJU7365 is a single phase motor driver ic that include in package MOS FET motor driver , direct PWM input , FG output and thermal shut down circuit . The driver is capable of 1000mA maximum output current and continuous current of 350 mA . This motor driver require few external electronic parts and can be powered from dc power supply from 2 to 5.5 volts .
Thursday, October 30, 2014
Outdoor LED Solar Lights Circuit Schematic
Wednesday, October 29, 2014
Low Voltage Cut Out Circuit Diagram
Tuesday, October 28, 2014
250mW 16 dB VHF amplifier Circuit diagram
The output of this stage is around 70mW of RF power.
The transistor is biased by means of R5, R6 and L6, and the residual DC current is set by R4. The input signal is coupled by C9 to the Base of the transistor.
The input signal from Q1 is coupled to the Base of Q2 via C7.The 78L08 voltage regulator is used to regulate the supply voltage to Q1 and the bias votages to both Q1 and Q2 so that the output RF power is relatively constant, even with large variations of supply voltage.
The output of the amplifier is filtered with a low-pass filter to reduce the output spurious and harmonic content.
The output filter consists of C3, C4, L1 and L2.
This RF power amplifier must be powered from a simple 12 volts DC power supply circuit.
Mini Roulette Circuit
Mini Roulette Circuit |
Saturday, October 25, 2014
Mains Frequency Monitor Diagram Circuit
Circuit diagram:
Friday, October 24, 2014
230Volt LED Circuit
Thursday, October 23, 2014
150 watts power amplifier circuit
This circuit requires only 5 pieces of transistors as the main component of reinforcement. There is no equalizer option on this amplifier circuit because it can be said of this series is very simple, so do not you compare it with that sold in the market which are usually equipped with various sound system and equalizer settings.
But to add to your collection circuit, this circuit is fairly easy and inexpensive to make and maybe one day you may need as a weak signal booster from your electronic circuit. Or you can also make this amplifier as an amplifier of high frequency signal from the output circuit animal repellent and I guarantee the results are very satisfactory.
Power supply required is two-polarity power supply is + - 45 volts. Maximum power that can be obtained by this amplifier circuit is around 150 watts. As the volume control you can add potensio or variable resistor 10 Kohm in series at the input. Use dispasi loudspeaker with 150 watts power. Use a heatsink on the transistor-transistor driver loudspeaker or amplifier late as Q1 and Q2.
Thursday, October 16, 2014
Build a Digital Electronic Lock Circuit Diagram
Read : Cheap Bicycle Alarm Schematics Circuit
Digital Electronic Lock Circuit Diagram
Read : Emergency Light and Alarm Circuit Diagram
Read : Burglar Alarm With Timed Shutoff Circuit Diagram
Read : 5 Zone alarm Circuit Diagram
Read : Alarm Control Keypad Circuit Diagram
Wednesday, October 15, 2014
2 Transistor Electronic Siren Circuit Diagram
How To Build Hammonator Organ to Guitar Amp Conversion Circuit Diagram
In the world of electronics, vacuum tubes are almost obsolete. Nearly the last holdout, the cathode ray tube (CRT), is rapidly being replaced by the LCD and other new technologies. Despite this trend, the vacuum tube has seen a big revival in the field of guitar amplifiers, and to a lesser extent, hi-fi amplifiers. Vacuum tubes and related parts have become more readily available in recent years as numerous companies have tapped into this market.
The reason for the popularity of tubes in guitar amps involves the nice tones that are produced when tubes are driven to the point of distortion. For some background on this, follow some of the links on The Strat Monger. There are numerous solid state "modeling amps" that try to simulate vacuum tube amps with digital signal processing (DSP) techniques, but in the end, that method is never more than a simulation. It just aint the same as the real thing.
One can spend a large amount of money and time building a tube amp from scratch. Hammond organ ampifiers chassis are available on the surplus market for a reasonable price, they make a good starting point for a guitar amp. The difficult job of cutting chassis holes for the tubes and transformers is already done, one just needs to drill a few holes for the potentiometers and connectors. This project started with the amplifier from a Hammond M2 organ, chassis model AO14-1B.
The Hammonator Model 1 amp is a simplified version of the Hammonator 2RVT circuit. Builders can start with the Model 1 circuit and easily add the Model 2RVT Vibrato/Tremolo circuitry at a later date.There are a few unique features in this amp, and some slight deviations from the aforementioned simplicity goal. An optional fluorescent EM87/6HU6 "magic eye" tube (EM87 in action) is used for an output level meter, it is fun to stare at while playing. The EM87 uses a peak reading circuit that was inspired by this design then modified somewhat. There is a reverb send control (Dwell) that can be used to expand the variety of reverb sounds. Most Fender amps send only a full-strength signal to the reverb spring. By turning the reverb send signal down a bit, a less "clangy" and more "spacey" reverb sound results.
The Hammonator also features a negative feedback control. With the feedback control turned all the way to the left (max negative feedback), the amp compresses the signal and the waveform peaks are reduced. With the feedback control turned all the way to the right, the sound is louder and less compressed and approaches that of the popular Fender Tweed Deluxe (5E3) amps. The feedback control could also be called "Clarity", "Gain" or "Presence".
This amp uses four octal base 6SN7 dual triode tubes for most of the low level signal amplification instead of the more common 12AX7 or 12AU7 tubes. This was done because the chassis was already set up for the octal sockets. Boutique amp enthusiasts will probably like this feature since the 6SN7 tubes are older and may have more of a vintage amp sound. Fortunately, the 6SN7 is still easy to acquire. This amp has been "tuned" for good sound, the bias settings of all of the tube stages were tweaked while a guitar was plugged in. This process was used to optimize the musical qualities of the amp. Not all vintage 6SN7 tubes are the same, quieter Sylvania tubes were used for VT1 and VT3 to reduce the hiss, nosier RCA and GE tubes were used elsewhere. You can test for noisy 6SN7 tubes by putting them in the VT1 socket, listening to the hiss level and tapping on the tube to listen for microphonics.
It is possible to change VT1, the first preamplifier and tone recovery tube, from a lower gain 6SN7 dual triode to a higher gain 6SL7 dual triode without any wiring changes. This allows the amplifier to work better with low output guitar pickups. This trick is often done with other amps by swapping 12AU7, 12AT7, 12AY7 and 12AX7 tubes, they all share the same pinout but have different gains.
The newer and more common AO-29 (M3 organ) chassis would also make a good chassis for a guitar amp conversion. The three 9 pin tube sockets could be used for 12AX7 or 12AU7 dual triode tubes and the five 7 pin tube sockets could be filled with common 6AV6 tubes (similar to a single 12AX7 triode) or 6C4 tubes (similar to a single 12AU7 triode). A similar circuit layout could be used on the AO-29 chassis but the cathode bias resistor values on the 7 and 9 pin preamp triodes would need to be changed from the values used on the 6SN7 tubes. The AO-29 power transformer and output transformer are very similar to those used in the AO-14.
Connections:
Power Input - grounded 120VAC
Guitar Input - High Impedance
Reverb Send
Reverb Return
Speaker Output - 8 ohms
Controls:
On/Off (on the back)
Input Volume
Bass
Treble
Reverb Send (Dwell)
Reverb Return
Feedback (Gain)
Theory:
The AC power input circuitry was modified from the original Hammond circuit. The power transformer is old enough that it was designed to run on 110V-115V mains instead of the 120V mains found today. Running the stock amp on 120V produces higher filament and B+ voltages, the higher filament voltages can shorten the life of the tubes. This problem can be easily fixed by putting the 5V rectifier filament winding in series with the AC primary winding. The 5V phasing must be correct, the easy way to test this is to try both orientations and monitor the 6.3V filament winding, use the lower wiring that produces the lower voltage. When the tubes are plugged, the filament voltage should be very close to 6.3V.
A grounded plug was used, this is critical for safety. A 2 amp fuse and switch are used to provide a standard fused disconnect. The varistor on the transformer primary protects against line voltage transients, those can get multiplied on the high voltage output winding and cause damage.
The transformer high voltage winding is sent to a center tapped full wave rectifier consisting of two 1N4007 diodes. The high voltage DC is dropped through a typical chain of resistors and capacitors to produce the voltages used in the amp. The first resistor (150 ohms/2 Watt) is used to set the initial B1+ voltage that drives the power output tubes.
There is a lot of misinformation on the net about tube rectifiers vs solid state rectifiers and the effect on amp sound. This probably derives from the more efficient nature of solid state diodes and the resulting higher voltage when a direct substitution is done. Putting a resistor after the diodes drops the B+ voltage to a level that is closer to that achieved with a 5U4 rectifier. The diodes have the advantage of better efficiency due to the lack of a high power filament, the power transformer will also run cooler using diodes. The 1nF/1KV capacitors across the diodes protect against high voltage transients and eliminate RF rectification issues.
The 5H inductor choke is used to reduce hum in the preamp stages, the value is not especially critical. The 220nF capacitors in the power supply are fairly unique to this design, they improve the high frequency response of the amp. This is a trick that was borrowed from solid state circuitry. If you dont have any 220nF caps, 100nF caps should do the job.
The Vbias- negative voltage is derived from a half wave rectifier and a resistive ladder. The 25K bias control can be adjusted to set the idle bias level on the power tubes. Bias levels for both 6V6 and 6L6 tubes can be generated.
The guitar input stage (VT1b) is a standard class A triode amplifier. The 1K cathode resistor was chosen to bias this most important amplifier stage into the "sweet spot". The tone controls use the Baxandall tone stack configuration. This circuit has a much more distinct boost and cut operation when compared to many of the traditional Fender circuits. A guitar player friend had the amusing suggestion that the "Bass" and "Treble" labels should be changed to "Balls" and "Grit". The post-tone amplifier stage VT1a is another class A triode amplifier. Again, the 1K bias resistor was chosen for the best sound.
The reverb send amp VT2 gets its input from the tone control recovery amplifier VT1a. The 500K linear pot is used to adjust the reverb send level from half way to full. An audo taper pot was tried here, the linear pot had a better response. Both halves of VT2 are run in parallel, the 560 ohm bias resistor was chosen for the best tube drive level. VT2 runs slightly warm, with a bit of blue glow showing. A standard Fender "Twin Reverb" reverb transformer can be used to drive the reverb, I used a slightly heavier Buddy MC500 transformer.
The reverb return signal goes to two class A triode stages formed by VT3b and VT3a. The reverb return level is set with the 100K audio pot and mixed into the phase splitter stage (VT4) through a 5nF capacitor. The clean (non-reverb) signal is amplified by VT7, a 6AV6 triode wired as a floating cathode-biased stage. The 6AV6 isolates the reverb send and receive signals to prevent feedback, it also forms the heart of the vibrato/tremolo circuit in the Hammonator model 2RVT design.
The balanced phase splitter circuit is formed by VT4a and VT4b. This stage combined with the power tube stage is fairly close to the Fender Vibroverb circuit. The two opposite-phase drive signals are sent to the control grids of the 6V6 power output tubes. An RF power amp trick is used here to reduce potential radio frequency oscillation issues, 10nF capacitors bypass the screen grids to ground. These caps should not be confused with the unpopular tone-deadening control grid caps that were added to Post-CBS Fender Twin Reverb amps.
A triple feedback loop is used between the output transformer and the input of the phase splitter. The low and high cut loops reduce the sub-sonic and ultra-sonic gain, eliminating any tendencies to oscillate and generate radio frequencies. While experimenting with the circuit, some nearly dead power tubes were used, the tubes tended to oscillate when biased to a useful setting. These additions reduced that problem and improved the sound, RF superimposed on audio does not sound good.
A fairly heavy modem isolation transformer from a 300 baud vintage of modem was wired in series to make the low-cut inductor. When the amp is driving a speaker, there can be large resonances in the low bass part of the spectrum. A 12" speaker in an open-backed cabinet had a natural resonance around 70 Hz. Audio at the speaker resonance frequency is amplified to about twice the level as other frequencies, resulting in an exaggerated bass response and distortion. The low-cut feedback circuit offsets this resonance effect.
An earlier version (obsolete) of this amp used a different anti-resonance feedback (ARF) loop that consisted of a 300 ohm resistor, a series-wired modem transformer and a 1.32uF stack of capacitors that was tuned to cancel the speaker resonance. When feeding a purely resistive load, the amplifier has a fairly flat frequency response. The low-cut/high-cut feedback loop eliminates the need to tune the amp for individual speakers.
The 6HU6 eye tube circuit gets its control signal from the output transformer. The signal is rectified, low-passed and sent to the tubes control grid. The 10M bias resistor opens the tubes display farther during quiet operation. The 5K trimmer should be adjusted so that the eye tube display closes completely when the amp is played to maximum power.
Biasing the Power Tubes
If you want more than 18 Watts of power, it is possible to replace the 6V6 tubes with 6L6 tubes, simply re-adjust the bias control. The bias is set by putting a DC volt meter between the Imon1 terminal and ground. The Imon2 terminal can be checked to see if the power tubes are well matched. Both Imon1 and Imon2 should have similar voltages. The 6V6 tubes work well with a bias of around 0.17V (17 mA) and 6L6 tubes work well at around 0.35V (35mA). Tube bias setting is a trade-off between loudness and tube life. Generally, the bias should be set so that the tubes dont become too warm when there is no signal going through them.
Construction:
Here is a photo of the wiring side of the Hammonator 2RVT amp, it is essentially the Hammonator 1 circuit with a few additions.The stock Hammond amp chassis that this project was built on was dirty, rusty and filled with mostly useless parts. A wire brush was used to scrape off the rust and dirt. Leave the original filament wiring from the power transformer to the 6V6 tubes intact. You will need to move one of the filament wires on some of the 6SN7 tube sockets (formerly other tube types). The power transformers high voltage leads can be left connected to the 5U4 socket, the 1N4007 rectifier diodes can be wired to the pins of the 5U4 socket. The output transformers primary wiring should be left as-is.
The ground wires that connect all of the tube sockets should be left intact. Just about everything else can be clipped off, leave all of the transformer wires as long as possible. There were two plug-boards in the center of the amp. All of the wires between the plug-boards and the tube sockets were clipped at the tube sockets and the boards were removed. The wires to the screw terminals were also clipped off. Some of the plug-board capacitors were scavanged for use elsewhere.
A new 3-wire power cord power switch were installed in the small metal wiring box that is located behind the power transformer. Two of the downward-facing holes in the wiring box were expanded to fit the power cords strain relief and the switch. A plastic "pigtail" type of fuse holder was also installed in the box. The power cables green ground wire was connected to the chassis with a solder lug.
The two tall electrolytic capacitors were removed from the chassis. The silver capacitors hole was filed out and drilled to fit the 6HU6 eye tube socket. A sheet metal filler was installed in the black capacitors hole (the photo above was taken before this was done). The volume pedal tower was disassembled and the empty space was used as a "doghouse" for most of the electrolytic capacitors. The caps were secured to the towers bakelite spacers with panduit ties. The tower allows the amp to sit upside down without resting on the tubes, this is very useful when working on the amp.
Sunday, October 5, 2014
Zinc Carbon Battery charger circuit and explanation
They are cheap. The electrolyte used to leak but today they are usually much better protected. If they should leak then they will corrode all the copper in your equipment. the corrosion will travel down wires and eat its way through Printed Circuit Boards (PCBs). At high temperatures (25 degrees or more) Zinc-Carbon batteries will give up to 25% more capacity but the shelf-life will deteriorate very rapidly. Around freezing point their shelf-life can be extended by as much as 300% so one tip is to store them in the refrigerator.
Unfortunately they must be thrown away when they are exhausted. You can extend their life by up to 60% by using "Dirty-DC" to recharge them but this will also reduce the shelf-life.
Ry should be about 1.5 x greater than Rx. The resistors are determined by the charging current you want. With the circuit shown and size AA cells in a pack of ten cells, the battery voltage will be 15 volts. Discharge the battery to no less than 25%. To replace 350mA/H back into the battery over 10 hours we need to charge at 35mA.
Rx = (24 - 15 - 0.7) / (3 x 0.035) = 79 ohms
Ry = (24 - 15) / (2 x 0.035) = 128
You can also cook exhausted battery cells in the oven. About 80 degrees centigrade for five to ten minutes, no more or they may explode. This technique was demonstrated on UK TV in the series "Steptoe & Son" (h�r i Sverige i "Albert och Herbert"). I do not reccomend that you should try to sell the cells again as new batteries!
Thursday, October 2, 2014
Simple Accurate Capacitance Meter Circuit Diagram
This relies on the formula C = O/V where C is the capacitance in Farads, O is the charge in Coulombs and V is the voltage in volts. lf therefore two capacitances have equal charges, their values can be calculated when the voltages across them are known. Two circuits ensure that reference capacitor Cr and the capacitor to be measured, CX, are charged equally. The circuit for Cr consists of C2, Di and T1 and that for CX of C3, D2 and T3. Each time the output of gate N2 rises, the charges of capacitors C2 and C3 are transferred to Cr and CX { by trer:cFstorsT1 and T3 respectively.
When the output of N2 drops, C2 and C3 recharge via diodes D1 and D2. Gate N2 is controlled by astable multivibrator N1 which operates at a frequency of about 2 kHz: Cr and CX are therefore charged at that frequency. The voltage across Cy is compared by IC2 with a reference voltage derived from the power supply via R3/R4. When the voltage across Cr exceeds the reference voltage, com- parator IC2 inverts which inhibits N2 and causes N3 to light LED D3. The charges on Cr and CX are now equal and the meter indicates by how much the voltage across CX differs from that across Cr. Buffer lC3 presents a very high load impedance to CX. Pressing reset button S1 causes both Cr and CX to discharge via T2 and T4 respectively, after which the charging process restarts and the circuit is ready for the next measurement. The meter is calibrated by using two identical 10 nF capacitors for Cr and CX. Press the reset button and, when the LED lights, adjust preset P1 to give a meter reading of exactly one tenth of full scale deflection (fsd).
That reading corresponds to 1 x Cr. lf, therefore, Cr = 100 nF and CX = 470 nF, the meter will read 0.47 of fsd. To ensure a sufficient number of charging cycles during a measure- ment, Cr and CX should not be smaller than 4.7nF. To measure smaller values, capacitors C2 and C3 will have to be reduced. For instance to enable a capacitor of 470 pF to be measured, C2 and C3 have to be T0. . . 20 pF. The circuit is reason- ably accurate for values of CX up to 100 pl:. Above that value the measurement will be affected by leakage currents. To measure capaci- tors of up to 100 pF, the values of C2 and C3 should be increased to 1 AF. Current consumption is minimal so that a 9 V battery is an adequate power supply.

Wednesday, October 1, 2014
Simple Photo transistor Light Sensor Driver Circuit Diagram
- The computer can be programmed to monitor the output of the light t detector, and automatically arranges for the relevant lights to come when it gets dark.
- The sensitivity can be made adjustable for particular requirements by replacing R1 with a series connected 10 KQ preset and a 2709 resistor.
- This circuit provides a computer with information about the presence of daylight.
- The circuit is simple enough to enable ready construction on a piece of veroboard. Its output is TTL compatible, and logic low when the phototransistor detects light.
- Possible applications include automatically measuring the duration of the daylight period in an autonomous weather station, or in control systems for outside lighting around the home.

Saturday, September 20, 2014
Heart Rate Monitor Wiring diagram Schematic
Monday, September 15, 2014
Mini High Voltage Generator Circuit
Using a centre-tapped transformer as here makes it possible to build a ‘Hartley’ oscillator around transistor T1, which as we have indicated above was used a great deal in radio in that distant era when valves reigned supreme and these was no sign of silicon taking over and turning most electronics into ‘solid state’. The ‘Hartley’ is one of a number of L-C oscillator designs that made it to eternal fame and was named after its invertor, Ralph V.L Hartley (1888-1970). For such an oscillator to work and produce a proper sinewave output, the position of the intermediate tap on the winding used had to be carefully chosen to ensure the proper step-down (voltage reduction) ratio.

If you build the version without the voltage doubler and measure the output voltage with your multimeter, you’ll see a lower value than stated. This is due to the fact that the waveform is a long way from being a sinewave, and multimeters have trouble interpreting its RMS (root-mean-square) value. However, if you have access to an oscilloscope capable of handling a few hundred volts on its input, you’ll be able to see the true values as stated. If you’re still not convinced, all you need do is touch the output terminals...
Sunday, September 14, 2014
TEXAS RANGER – TR 127GK DK CIRCUIT DIAGRAM

PWB_COMPONENT LAYOUT


