Wednesday, November 12, 2014
NJU7365 bassed DC brushless motor driver circuit with explanation
A very simple single phase dc brushless motor driver electronic circuit project can be designed using NJU7365 DC brushless motor driver ic manufactured by New Japan radio Co. LTD .
The NJU7365 is a single phase motor driver ic that include in package MOS FET motor driver , direct PWM input , FG output and thermal shut down circuit . The driver is capable of 1000mA maximum output current and continuous current of 350 mA . This motor driver require few external electronic parts and can be powered from dc power supply from 2 to 5.5 volts .
Tuesday, October 28, 2014
250mW 16 dB VHF amplifier Circuit diagram
The output of this stage is around 70mW of RF power.
The transistor is biased by means of R5, R6 and L6, and the residual DC current is set by R4. The input signal is coupled by C9 to the Base of the transistor.
The input signal from Q1 is coupled to the Base of Q2 via C7.The 78L08 voltage regulator is used to regulate the supply voltage to Q1 and the bias votages to both Q1 and Q2 so that the output RF power is relatively constant, even with large variations of supply voltage.
The output of the amplifier is filtered with a low-pass filter to reduce the output spurious and harmonic content.
The output filter consists of C3, C4, L1 and L2.
This RF power amplifier must be powered from a simple 12 volts DC power supply circuit.
Saturday, October 25, 2014
Mains Frequency Monitor Diagram Circuit
Circuit diagram:
Monday, October 13, 2014
Engine Motronic BMW M50 1 3 1993 Ignition System Wiring
The following schematic shows the 1993 BMW M50 Engine Motronic 1.3 Ignition System Wiring Diagram which consists of: battery, ignition switch, ignition coil, distributor, spark plugs and motronic control unit.
Sunday, October 5, 2014
Zinc Carbon Battery charger circuit and explanation
They are cheap. The electrolyte used to leak but today they are usually much better protected. If they should leak then they will corrode all the copper in your equipment. the corrosion will travel down wires and eat its way through Printed Circuit Boards (PCBs). At high temperatures (25 degrees or more) Zinc-Carbon batteries will give up to 25% more capacity but the shelf-life will deteriorate very rapidly. Around freezing point their shelf-life can be extended by as much as 300% so one tip is to store them in the refrigerator.
Unfortunately they must be thrown away when they are exhausted. You can extend their life by up to 60% by using "Dirty-DC" to recharge them but this will also reduce the shelf-life.
Ry should be about 1.5 x greater than Rx. The resistors are determined by the charging current you want. With the circuit shown and size AA cells in a pack of ten cells, the battery voltage will be 15 volts. Discharge the battery to no less than 25%. To replace 350mA/H back into the battery over 10 hours we need to charge at 35mA.
Rx = (24 - 15 - 0.7) / (3 x 0.035) = 79 ohms
Ry = (24 - 15) / (2 x 0.035) = 128
You can also cook exhausted battery cells in the oven. About 80 degrees centigrade for five to ten minutes, no more or they may explode. This technique was demonstrated on UK TV in the series "Steptoe & Son" (h�r i Sverige i "Albert och Herbert"). I do not reccomend that you should try to sell the cells again as new batteries!